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Section A: Further Numerical Linear Algebra

1. (a) [9 marks] State the QR iteration with shifts for computing approximate eigenvalues of a
matrix A. Show that the eigenvalues that the QR iteration with shifts converges to are
independent of the shifts. Describe how the shift parameter aids in the computation of
the approximate eigenvalues.

(b) [8 marks] Let P(A) = ;?:0 ;A7 be a polynomial in the matrix A. Consider a matrix
A with all distinct real eigenvalues, one of which is contained in the interval [c,d] and
the remaining in [a,b] where b < c. Let the polynomial P(:) satisfy the property that
when applied to a scalar z, it gives that 1/2 < P(z) < 1 for z € [¢,d] and |P(z)| < 1/10
for z € [a,b]. Describe the convergence properties of the power method for eigenvalues,
applied to the matrix P(A). Contrast applying the power method to P(A) as opposed to
A directly; specifically comment on convergence rates and what the power method would
converge to in the two cases.

(c) [8 marks] Can a sequence of invertible non-unitary matrices C; be used to compute ap-
proximate eigenvalues of a matrix A by computing AY) = C’jA(j 'UCJ‘-‘ L for j > 1 with
A® = A7 Contrast such an approach with the Jacobi algorithm for computing approxi-
mate eigenvalues of symmetric matrices.

2. Throughout this problem let A € R™*" be an arbitrary nonzero matrix with m < n.

(a) |7 marks] Explain how the power method for computing an eigenvalue can be applied to
AAT in order to compute the largest singular value of A.

(b) [9 marks] State an algorithm to compute unitary matrices Q and H such that B = QAH
is bi-diagonal; that is, B; ; can only be non-zero for indices i = j and i = j — 1.

(c) [9 marks] Let the matrix B computed in part (b) have indices i such that B;;4+1 = 0.
What are the implications of this for computing the singular value decomposition of A
both in terms of computational cost and suitability for the computation to be subdivided
and implemented across multiple computers simultaneously?
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Section B: Continuous Optimization

3. Consider the unconstrained optimization problem

min f(z), (1)

zER™
where f : R® — R is continuously differentiable. We apply a Generic Linesearch Method
(GLM) with backtracking-Armijo linesearch to (1), where on each iteration £ > 0, the search

direction s* from the current iterate z* satisfies

s* = (BT (), (2)

where BF is an n X n symmetric and positive definite matrix and V f is the gradient of f.

(a) [2 marks] Show that s* defined in (2) is a descent direction provided V f(z*) # 0.

(b) [11 marks] State conditions on the matrices B¥, k > 0, and on the objective f, under
which the GLM with s* as in (2) is globally convergent from any z% € R™, namely, either
there exists an iteration [ > 0 such that Vf(z!) = 0 or Vf(z*) — 0 as k — oo. Give a
proof of this global convergence result.

Hint: In your proof, you may use the following result. Let f € C'(R™) be bounded
below on R™ and Vf be Lipschitz continuous. Then (any) GLM with backtracking-

Armijo linesearch applied to (1) satisfies: either there exists an iteration ! > 0 such that
N . [ IV (R)T s BT k| {
Vf(z") =0or lim min{ —————, |V f(z")" s"| » = 0.
k—o0 (Bl

(c) [7 marks] Assume that the matrices (B*)~! in the GLM are updated by a quasi-Newton

formula. In particular, on the kth iteration, after calculating z*+!, we set
5k(5k)T
E+1y=1 _ /1 pky-1 T
(B ) - (B ) + (n/k)T(Sk + TUv )

for some 7 € R and v € R”, and where v* = V f(zF+1) - V f(z*) and 6% = z#+1 —2*. Find
an expression for (BF+1)~! such that it satisfies the secant condition (B**+1)~lyk = gk,
where v¥ = Vf(2*t1) — Vf(z*) and 6% = %! — zF. (The expression of (B*™1)~1 is the
so-called DFP formula.)

(d) [5 marks] Assume we are in the case of part (c), namely, that the matrices (B*)™! in
(2) are updated using the DFP formula. Assume also that BO is symmetric and positive
definite. Find a necessary condition (involving v* and 6*) for (B*+1)~! to be positive
definite for all & > 0. State, without proof, whether this condition is also sufficient.
Show that the condition you found holds if on each iteration k, the stepsize a® > 0is
required to satisfy

Vi(z® + oFs*)Tsk > gV ()T sk (3)

where 0 < 8 < 1.
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4. Consider the trust-region subproblem

1
m}%{n m(s) =c+s g+ §STHS subject to |[|s]| < A (4)
scR™
where ¢ € R, g € R and H is an n X n symmetric matrix, where || - || denotes the Euclidean

vector norm and A > 0.

(a) [5 marks] State (without proof) the necessary and sufficient conditions that hold at a
global minimizer s* of (4).

(b) [15 marks] In (4), let n =3, ¢ =0, and

b

0 0
10 and g=1[ 0 |. (5)
01 1

H =

O O 8

Using the characterization of global minimizers in part (a) or otherwise, find the global
minimizer of (4) in the following cases:

(i) a # 0 and b # 0

(i) a <0 and b=0.

(c) [5 marks] Consider problem (4) for general n > 1. Prove that if the conditions you stated
in (a) hold, then s* is a global minimizer of the trust-region subproblem (4) (this is the
sufficiency part of the conditions you stated in (a)).

Hint: You may use the following fact: for a given (unconstrained) quadratic model
M(s) := c+ sTg + %STBS with B positive semidefinite, every § satisfying Bs = —g¢g
is a global minimizer of M.
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5. (a) Consider the following constrained optimization problem

min  f(z) = 2? + 223 subject to c(z) =z +x2—1>0. (6)
z={(z1,T2)ER?
(vi) [3 marks] Find all solutions of problem (6).
(ii) [4 marks] Associate to problem (6), the following penalty function

2o(a) = f(2) + ~(c(a))’ ”)

where o > 0. Find the unconstrained, local or global, minimizers z(c) of ®,(x) for
o > 0. Show that z(o) converges to a solution of (6) as ¢ — 0, and find the rate of
this convergence as a function of 0.

(iii) [5 marks] Associate to problem (6), the following barrier function

fu(m) = f(CL') - /Llogc(:c), (8)

where ¢ > 0. Find the unconstrained, local or global, minimizers xz(p) of f,.(z) for
p > 0. Show that z(p) converges to a solution of (6) as 4 — 0, and find the rate of
this convergence as a function of u. Briefly compare your findings here with those in

(a)(ii).

(b) Consider the inequality-constrained optimization problem

min f(z) subject to Az >0, (9)
z€R™

where f : R™ — R is a smooth function, A is a p X n matrix and b € RP.

(i) [5 marks] Write down the logarithmic barrier function associated with (9) and the
conditions under which it is well-defined. Describe its connection to the solution
of problem (9), namely, the relation between optimality conditions for the barrier
function and those of (9).

(ii) [8 marks] Describe the steps of the basic barrier (also called interior point) algorithm
applied to (9). State (without proof) the theorem of global convergence of the basic
barrier algorithm. Briefly describe two inefficiencies of the barrier method and one
way to overcome them.

Page 5 of 6 Turn Over




6. (a) [6 marks] Consider the quadratic programming problem

min g + —l—sTB.s subject to  Js = —c, (10)
SER™ 2

where g € R™, ¢ € R™, B is an n X n symmetric matrix and J is an m X n matrix, with
m < n. Write down the KKT conditions for problem (10). Find conditions on the matrix
B such that the KKT conditions are sufficient for optimality for problem (10); justify
your answer.

(b) [10 marks] Consider the constrained optimization problem

min f(z) subject to c(z) =0, (11)
z€R™

where f: R®” — R and ¢: R® — R™ are twice continuously differentiable and m < n.

Briefly outline the basic steps of the SQP method with linesearch applied to (11), using
the quadratic penalty merit function.

Under suitable conditions on the approximation B* to the Lagrangian’s Hessian matrix,
show that, while the SQP iterate z* is not a KKT point, the SQP step s* is a descent
direction for the quadratic penalty function provided the penalty parameter is sufficiently
small.

(c) [9 marks] Consider again problem (11). Write down the Newton step sk from some z
for the quadratic penalty function associated with (11). Compare this Newton step slf\,

to the direction that the SQP method in (b) computes on iteration k, from the same z*.

Assume that the Hessian of the Lagrangian term that occurs in the Hessian of the
quadratic penalty is approximated by a matrix B*. Establish whether the Newton step s’fv
is descent for the quadratic penalty function under the same assumptions on the matrix
B* as those for the SQP step in (b).

k

Page 6 of 6 End of Last Page




